Supplementary Tables

Keyword number	Keyword	Filter	Limiters
1	"ccPAS"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
2	"cPAS"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
3	"PAS"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
4	"cortico-cortical paired associative stimulation"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
5	"corticocortical paired associative stimulation"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT	Articles and Reviews

Table S1. Systematic review searched keywords

		Agriculture NOT Biochemistry NOT Immunology NOT Engineering	
6	"paired associative stimulation"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
7	"repetitive dual coil transcranial magnetic stimulation"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
8	"repetitive dual-coil transcranial magnetic stimulation"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
9	"repetitive dual coil TMS"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
10	"repetitive dual-coil TMS"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT	Articles and Reviews

		Immunology NOT Engineering	
11	"repetitive paired pulse transcranial magnetic stimulation"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
12	"repetitive paired- pulse transcranial magnetic stimulation"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
13	"repetitive paired pulse TMS"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
14	"repetitive paired- pulse TMS"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews
15	"repetitive ppTMS"	Human AND Psychology AND Neuroscience NOT Economics NOT Business NOT Agriculture NOT Biochemistry NOT Immunology NOT Engineering	Articles and Reviews

Network	Hedges	SE	CI	PI
CB-M1	0.777	0.112	0.54 1.02	0.34 1.22
M1-M1	0.53	0.0894	0.34 0.72	0.11 0.95
PMv-M1	0.463	0.0623	0.33 0.59	0.07 0.86
PPC-M1	0.536	0.106	0.31 0.76	0.10 0.97
SMA-M1	0.298	0.146	-0.01 0.61	-0.19 0.78

 Table S2. Moderator analysis of Motor-ccPAS (Brain network)

 Table S3. Moderator analysis of PMv-M1 ccPAS (Cognitive State)

Cognitive State	Hedges	SE	CI	PI
ACTIVE	0.593	0.085	0.40 0.78	0.32 0.86
CCPAS	0.741	0.0831	0.55 0.93	0.47 1.01
REST	0.309	0.0436	0.21 0.41	0.10 0.52

Table S4. Moderator analysis of PMv-M1 ccPAS (Tested Cortical Circuit)

Circuit	Hedges	SE	CI	PI
CORTICOSPINAL	0.36	0.0728	0.20 0.52	-0.07 0.79
INTRACORTICAL	0.388	0.0943	0.17 0.60	-0.06 0.84
PREMOTOR	0.544	0.0674	0.39 0.70	0.12 0.97

Table S5. Moderator analysis of PMv-M1 ccPAS (Timing)

Timing	Hedges	SE	CI	PI
POST_1	0.482	0.0615	0.35 0.62	0.04 0.92
POST_2	0.398	0.074	0.23 0.56	-0.05 0.85

 Table S6. Moderator analysis of PMv-M1 ccPAS (Stimulation Intensity)

Intensity	Hedges	SE	CI	PI
90 %	0.492	0.0799	0.31 0.67	-0.03 1.01
110 %	0.42	0.137	0.11 0.73	-0.16 1.00

 Table S7. Moderator analysis of Visual ccPAS (Timing)

Timing	Hedges	SE	CI	PI
POST_1	0.557	0.0669	0.34 0.77	0.11 1.01
POST_2	0.526	0.0559	0.35 0.70	0.09 0.96
POST_3	0.488	0.112	0.13 0.84	-0.04 1.02

Supplementary Figures

Fig. S1. Bias estimation Motor-ccPAS. Bubble plot showing the relationship between the effect size magnitude and its adjusted sampling error (effective sample size based) for estimates in the Motor-ccPAS meta-analysis. Small studies (low precision) do not report large effect sizes.

Fig. S2. P-curve Motor-ccPAS. P-curve of significant findings included in the Motor-ccPAS meta-analysis. The observed p-curve includes 38 statistically significant (p < .05) results, of which 33 are p < .025. There were 27 additional results entered but excluded from p-curve because they were p > .05.

Fig. S3. Aggregate Forest Motor ccPAS. Forest plot of aggregated estimates (Hedges' g) from studies included in the equal-effect Motor-ccPAS meta-analysis. The pooled estimate and 95% confidence interval (red diamond) is reported and compared to null effect (dashed vertical line). The size of each black square indicates the weight of the effect size in the analysis with 95% CI (black lines). Studies are sorted according to the number of aggregated effect size (E.s.). Sample size of each study is also reported in a separate column.

Fig. S4. Motor ccPAS moderator. Forest plot distinguishing pooled effects for each brain network considered in the Motor ccPAS moderator analysis. Effect sizes with 95% CI (black squares and lines) are grouped depending on the moderator levels (n=3) and compared versus null effect (dashed horizontal line). Random effect estimates for each subgroup are reported with 95% PI (red diamonds and dashed line). Overall sample size for each cluster is reported beside the respective network.

Fig. S5. Bias estimation PreMotor-ccPAS. Bubble plot showing the relationship between the effect size magnitude and its adjusted sampling error (effective sample size based) for estimates in the PreMotor-ccPAS meta-analysis. Small studies (low precision) do not report large effect sizes.

Fig. S6. P-curve PreMotor-ccPAS. P-curve of significant findings included in the PreMotorccPAS meta-analysis. The observed p-curve includes 29 statistically significant (p < .05) results, of which 25 are p < .025. There were 21 additional results entered but excluded from p-curve because they were p > .05.

Fig. S7. Aggregate Forest PreMotor ccPAS. Forest plot of aggregated estimates (Hedges' g) from studies included in the equal-effect PreMotor-ccPAS meta-analysis. The pooled estimate and 95% confidence interval (red diamond) is reported and compared to null effect (dashed vertical line). The size of each black square indicates the weight of the effect size in the analysis with 95% CI (black lines). Studies are sorted according to the number of aggregated effect size (E.s.). Sample size of each study is also reported in a separate column.

Fig. S8. Forest M1-PMv ccPAS. Forest plot of absolute effect sizes (Hedges' g) for all studies included in the M1-PMv ccPAS meta-analysis. The pooled estimate and 95% confidence interval (red diamond) is reported with 95% prediction interval (dashed horizontal line) and compared to null effect (dashed vertical line). The size of each black square indicates the weight of the effect size in the combined analysis with 95% CI (black lines). Multiple effect sizes are reported for the studies.

Fig. S9. Funnel M1-PMv ccPAS. Funnel plot of raw effect sizes (Hedges' g) versus inverse standard error in the second Premotor ccPAS meta-analysis (M1-PMv). Black circles represent effect sizes included. The contour-enhanced funnel plots display the significance of the effects from in this meta-analysis relative to their magnitude and precision. For estimates falling inside the white and light-blue region, the null hypothesis of null effect can be rejected at the 1% significance level (p<0.01) and 5% (p<0.05) respectively. For estimates in darker-blue regions, significance is above 5% and 10%.

Fig. S10. Bias estimation M1-PMv ccPAS. Bubble plot showing the relationship between the effect size magnitude and its adjusted sampling error (effective sample size based) for estimates in the M1-PMv ccPAS meta-analysis. A positive trend is visible between small studies (low precision) and large effect sizes.

Fig. S11. P-curve M1-PMv ccPAS. P-curve of significant findings included in the M1-PMv ccPAS meta-analysis. The observed p-curve includes 6 statistically significant (p < .05) results, of which 5 are p < .025. There were 11 additional results entered but excluded from p-curve because they were p > .05.

Fig. S12. Aggregate Forest M1-PMv ccPAS. Forest plot of aggregated estimates (Hedges' g) from studies included in the equal-effect M1-PMv ccPAS meta-analysis. The pooled estimate and 95% confidence interval (red diamond) is reported and compared to null effect (dashed vertical line). The size of each black square indicates the weight of the effect size in the analysis with 95% CI (black lines). Studies are sorted according to the number of aggregated effect size (E.s.). Sample size of each study is also reported in a separate column.

Fig. S13. Bias estimation Visual-ccPAS. Bubble plot showing the relationship between the effect size magnitude and its adjusted sampling error (effective sample size based) for estimates in the Visual-ccPAS meta-analysis. Small studies (low precision) do not report large effect sizes.

Fig. S14. P-curve Visual-ccPAS. P-curve of significant findings included in the M1-PMv ccPAS meta-analysis. The observed p-curve includes 28 statistically significant (p < .05) results, of which 27 are p < .025. There were 9 additional results entered but excluded from p-curve because they were p > .05.

Fig. S15. Aggregate Forest Visual ccPAS. Forest plot of aggregated estimates (Hedges' g) from studies included in the equal-effect Visual-ccPAS meta-analysis. The pooled estimate and 95% confidence interval (red diamond) is reported and compared to null effect (dashed vertical line). The size of each black square indicates the weight of the effect size in the analysis with 95% CI (black lines). Studies are sorted according to the number of aggregated effect size (E.s.). Sample size of each study is also reported in a separate column.

Figure S 1

Figure S 2

Author(s)	Year	Sample	E.s.		Estimate [95% Cl]
Bevacqua et al.,	2024	15	1	▶ ■ − − 1	0.36 [-0.20, 0.92]
Veniero et al.,	2013	13	1	↓ ■ ↓	0.82 [0.20, 1.44]
Rizzo et al.,	2011	10	1	⊢	1.33 [0.58, 2.08]
Fiori et al.,	2018	12	1	F	0.95 [0.30, 1.60]
Sel et al.,	2021	12	1	<u>}</u> ∎4	0.22 [-0.36, 0.80]
Turrini et al.,	2022	56	1	⊢	0.78 [0.16, 1.41]
Turrini et al.,	2023	14	1	F	1.01 [0.42, 1.60]
Turrini et al.,	2023	14	1	⊢	0.27 [-0.24, 0.78]
Bevacqua et al.,	2024	15	1	⊢−−− −−−−−1	0.77 [0.18, 1.36]
Pauly et al.,	2021	20	2	⊢	0.71 [0.26, 1.16]
Casarotto et al.,	2022	31	2	⊢ I	0.54 [0.06, 1.02]
Chiappini et al.,	2024	16	2		0.08 [-0.36, 0.52]
Rizzo et al.,	2009	12	3	├──■ ──┤	0.50 [0.05, 0.96]
Casarotto et al.,	2023	31	3	↓■	0.39 [0.02, 0.76]
Arai et al.,	2011	7	4	⊢	0.29 [-0.21, 0.79]
Chao et al.,	2015	12	4		0.40 [-0.03, 0.83]
Carson et al.,	2021	13	4	⊢	0.60 [0.12, 1.08]
Turrini et al.,	2023	24	4	<u>}∎</u>	0.40 [0.03, 0.78]
Koch et al.,	2013	10	5	⊢ 1	0.64 [0.18, 1.10]
Buch et al.,	2011	35	5	· ■	0.54 [0.10, 0.98]
Lu et al.,	2012	19	9	⊢_∎{	0.93 [0.52, 1.34]
Koganemaru et al.,	2009	23	9	⊨	0.42 [-0.03, 0.87]
Pooled Estimate				•	0.54 [0.44, 0.64]
			-0	0.5 0 0.5 1 1.5 2 2.5	
				Hedges (g)	

Author(s)	Year	Sample Size		Estimate [95% CI]
SMA-M1		N=22		
Bevacqua et al	2024	IN-22	<u> </u>	0.36 [-0.02, 0.74]
Arai et al	2011			0.40 [-0.12 0.03]
Arai et al.,	2011	-		0.42 [-0.11, 0.95]
Arai et al.,	2011	-		0.42 [-0.11, 0.35]
Arai et al.,	2011			0.24 [-0.27, 0.75]
	2011			0.10[0.40, 0.00]
RE Model for Subgro	oup			0.30 [-0.01, 0.61]
PPC-M1	0040	N=35		0.001.0.05 4.001
veniero et al.,	2013			0.82 [0.35, 1.28]
Koch et al.,	2013	-		0.35 [-0.11, 0.80]
Koch et al.,	2013			0.73 [0.23, 1.23]
Koch et al.,	2013			1.15 [0.56, 1.73]
Koch et al.,	2013			0.68 [0.19, 1.18]
Koch et al.,	2013	-		0.30 [-0.15, 0.75]
Chao et al.,	2015			0.36 [-0.06, 0.78]
Chao et al.,	2015	-		0.32 [-0.10, 0.74]
Chao et al.,	2015		-	0.70 [0.24, 1.16]
Chao et al.,	2015	_		0.21 [-0.20, 0.62]
RE Model for Subgro	oup		··· ◆ ···	0.54 [0.31, 0.76]
PMv-M1		N=260		
Bevacqua et al.,	2024		e	0.77 [0.34, 1.20]
Chiappini et al.,	2024		.	0.08 [-0.28, 0.44]
Chiappini et al.,	2024			0.08 [-0.28, 0.44]
Casarotto et al.,	2023		_ _	0.57 [0.25, 0.90]
Casarotto et al.,	2023	-		0.18 [-0.12, 0.48]
Casarotto et al.,	2023		_	0.41 [0.10, 0.73]
Turrini et al	2023		<u>i</u>	0.27 [-0.04. 0.58]
Turrini et al.	2023	_		0.19[-0.12.0.49]
Turrini et al.	2023			0.29 [-0.10 0.68]
Turrini et al	2023		.	0.71 [0.31. 1.10]
Turrini et al	2023			0.44 [0.07, 0.81]
Turrini et al.	2023			1 01 [0 58 1 44]
Casarotto et al.	2023			0.70[0.26, 1.13]
Casarotto et al.,	2022			0.38 [-0.02, 0.78]
Casarotto et al.,	2022			0.38 [-0.02, 0.78]
Colletel	2022			0.70[0.31, 1.23]
Seretal.,	2021			0.22 [-0.20, 0.03]
Flori et al.,	2016			0.95[0.45, 1.45]
Buch et al.,	2011			0.65 [0.17, 1.12]
Buch et al.,	2011		_	0.59[0.13, 1.05]
Buch et al.,	2011			0.64 [0.17, 1.11]
Buch et al., Buch et al.,	2011			0.04 [-0.38, 0.46]
RE Model for Subgro	oup		····�···	0.46 [0.33, 0.59]
M1-M1		N=58		
Carson et al.,	2021		e	0.87 [0.24, 1.49]
Carson et al.,	2021		_	0.53 [0.02, 1.04]
Carson et al.,	2021		e	0.60 [0.15, 1.04]
Carson et al.,	2021			0.40 [-0.06, 0.86]
Koganemaru et al.,	2009			0.06 [-0.46, 0.58]
Koganemaru et al.,	2009			0.22 [-0.31, 0.75]
Koganemaru et al.,	2009		e	0.58 [-0.00, 1.16]
Koganemaru et al.,	2009	-		0.42 [-0.11, 0.94]
Koganemaru et al.,	2009		s	0.62 [0.06, 1.18]
Koganemaru et al.,	2009		e	0.64 [0.08, 1.21]
Koganemaru et al.,	2009		_	0.59 [0.11, 1.07]
Koganemaru et al.,	2009			0.39 [-0.07, 0.85]
Koganemaru et al	2009	_		0.26 [-0.19, 0.71]
Rizzo et al.,	2011		_	1.33 [0.70, 1.96]
Rizzo et al.,	2009		_	0.57 [0.12, 1.01]
Rizzo et al.	2009		_	0.47 [0.04, 0.90]
Rizzo et al.,	2009		-	0.47 [0.03, 0.90]
RE Model for Subgro	oup		··· ◆ ···	0.53 [0.34, 0.72]
CB-M1		N=39		
Pauly et al.,	2021			0.29 [-0.05, 0.62]
Pauly et al.,	2021			1.14 [0.72, 1.57]
Lu et al.,	2012		-	0.56 [0.13, 0.99]
Lu et al.,	2012		-	0.74 [0.29, 1.19]
Lu et al.,	2012		e	0.87 [0.40, 1.35]
Lu et al.,	2012		-	1.40 [0.60, 2.21]
Lu et al.,	2012		-	0.96 [0.29, 1.63]
Lu et al.,	2012		-	1.33 [0.55, 2.11]
Lu et al.,	2012			0.42 [0.01, 0.84]
Lu et al.,	2012		-	1.03 [0.53, 1.53]
Lu et al.,	2012		- _	1.08 [0.57, 1.59]
RE Model for Subgro	oup			0.78 [0.54, 1.02]
Test for Subgroup Difference	ces: Q _M = 2.10,	df = 4, p = 0.13		
		· · · · ·		
		-0.5	0.25 1 1.75 2.5 Hedges (g)	

Figure S 5

Author(s)	Year	Sample	E.s.		Estimate [95% Cl]	
Fiori et al.,	2018	12	1	├ ─── -	0.95 [0.29, 1.61]	
Sel et al.,	2021	12	1	F	0.78 [0.14, 1.42]	
Turrini et al.,	2022	56	1	├── ■───1	0.78 [0.30, 1.27]	
Turrini et al.,	2023	14	1 ⊢	 1	0.31 [-0.27, 0.89]	
Turrini et al.,	2023	14	1	F	0.90 [0.27, 1.52]	
Bevacqua et al.,	2024	15	1	F	0.77 [0.17, 1.38]	
Chiappini et al.,	2024	16	2 ⊢	■	0.08 [-0.37, 0.53]	
Casarotto et al.,	2023	31	3	⊨ 1	0.39 [-0.02, 0.80]	
Chiappini et al.,	2020	12	6 H		0.32 [-0.08, 0.73]	
Turrini et al.,	2023	24	7	! ── ■ ──1	0.33 [0.02, 0.64]	
Buch et al.,	2011	34	10	┝■1	0.53 [0.12, 0.94]	
Casarotto et al.,	2022	39	16	┝──■──┤	0.43 [0.08, 0.77]	
Pooled Estimate				•	0.47 [0.34, 0.60]	
			-0.5	0 0.5 1 1.5 2		
Hedges (g)						

Author(s)	Year		Estimate [95% CI]			
Chiappini et al.,	2024		0.20 [-0.16, 0.57]			
Chiappini et al.,	2024	_	0.08 [-0.28, 0.44]			
Bevacqua et al.,	2024		1.57 [1.00, 2.14]			
Turrini et al.,	2023		0.16 [-0.15, 0.46]			
Turrini et al.,	2023	_	0.41 [0.10, 0.73]			
Turrini et al.,	2023	_	0.52 [0.20, 0.84]			
Turrini et al.,	2023	-	0.01 [-0.29, 0.31]			
Turrini et al.,	2023		0.22 [-0.08, 0.53]			
Turrini et al.,	2023	-	0.02 [-0.28, 0.32]			
Turrini et al.,	2023	— —	0.02 [-0.28, 0.32]			
Casarotto et al.,	2022		0.26 [-0.19, 0.71]			
Casarotto et al.,	2022		0.16 [-0.28, 0.61]			
Turrini et al.,	2022		0.03 [-0.18, 0.24]			
Sel et al.,	2021		0.02 [-0.33, 0.38]			
Fiori et al.,	2018		0.37 [0.01, 0.72]			
Buch et al.,	2011	-	0.86 [0.31, 1.41]			
Buch et al.,	2011	-	0.64 [0.13, 1.16]			
Pooled Estimate			0.36 [-0.00, 0.73]			
RE Model (Q = 45.27, df = 16, p < 0.001; l ² = 84.72%)						
	-1	-0.12 0.75 1.62 2.5				
	Hedges (g)					

Figure S 9

Figure S 10

Author(s)	Year	Sample	E.s.		Estimate [95% CI]		
Fiori et al.,	2018	18	1	F	0.37 [-0.51, 1.24]		
Sel et al.,	2021	17	1	F1	0.02 [-0.85, 0.90]		
Turrini et al.,	2022	53	1	⊢ I	0.03 [-0.79, 0.85]		
Bevacqua et al.,	2024	15	1	F	1.57 [0.58, 2.55]		
Buch et al.,	2011	9	2	F			
Casarotto et al.,	2022	10	2	⊢ I	0.21 [-0.66, 1.08]		
Chiappini et al.,	2024	16	2	⊢ I	0.14 [-0.70, 0.98]		
Turrini et al.,	2023	24	7	F1	0.19 [-0.59, 0.98]		
Pooled Estimate				-	0.36 [0.06, 0.67]		
			ſ				
	-1 U 1 2 3 Hedges (g)						

Figure S 13

Figure S 14

Figure S 15

Supplementary References

- Bevacqua, N., Turrini, S., Fiori, F., Saracini, C., Lucero, B., Candidi, M., Avenanti, A., 2024. Corticocortical paired associative stimulation highlights asymmetrical communication between rostral premotor cortices and primary motor cortex. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation 0. https://doi.org/10.1016/j.brs.2024.01.001
- Cochran, W.G., 1954. The Combination of Estimates from Different Experiments. Biometrics 10, 101– 129. https://doi.org/10.2307/3001666
- Deeks, J.J., Higgins, J.P., Altman, D.G., 2008. Analysing Data and Undertaking Meta-Analyses, in: Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, Ltd, pp. 243–296. https://doi.org/10.1002/9780470712184.ch9
- Higgins, J.P.T., Thompson, S.G., 2002. Quantifying heterogeneity in a meta-analysis. Stat Med 21, 1539–1558. https://doi.org/10.1002/sim.1186
- Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D., 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71. https://doi.org/10.1136/bmj.n71
- Simonsohn, U., Simmons, J.P., Nelson, L.D., 2015. Better P-curves: Making P-curve analysis more robust to errors, fraud, and ambitious P-hacking, a Reply to Ulrich and Miller (2015).
- Turrini, S., Fiori, F., Bevacqua, N., Saracini, C., Lucero, B., Candidi, M., Avenanti, A., 2024. Spiketiming-dependent plasticity induction reveals dissociable supplementary– and premotor– motor pathways to automatic imitation. Proceedings of the National Academy of Sciences 121, e2404925121. https://doi.org/10.1073/pnas.2404925121
- Viechtbauer, W., 2010. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software 36, 1–48. https://doi.org/10.18637/jss.v036.i03
- Viechtbauer, W., Cheung, M.W.-L., 2010. Outlier and influence diagnostics for meta-analysis. Res. Synth. Method 1, 112–125. https://doi.org/10.1002/jrsm.11